Publications

(49) A Synthetic Lectin for Glucuronate. Zhai, C., Xu, C., Cui, Y., Wojtas, L., Cai, J., Liu, W. ACS Cent. Sci. 2025, 11, 1753-1761. [Link]
TOC Graphic for A Synthetic Lectin for Glucuronate
(48) An Electric Molecular Faraday Cage. Zhou, P., Cheng, K., Qu, K., Wang, L., Hu, C., Liu, W., Chen, H. J. Am. Chem. Soc. 2025, 147, 19272–19281. [Link]
TOC Graphic for An Electric Molecular Faraday Cage
(47) Sulfate Recognition in Water via Charge‐Assisted Hydrogen Bonding. Mariscal, A., Sagal, L., Doan, C., Zhai, C., Liu, D., Wojtas, L., Liu, W. Chem. Eur. J 2025, 31, e202501400. [Link]
TOC Graphic for Sulfate Recognition in Water via Charge‐Assisted Hydrogen Bonding
(46) Proline-based tripodal cages with guest-adaptive features for capturing hydrophilic and amphiphilic fluoride substances. Huang, B., Li, S., Pan, C., Li, F., Wojtas, L., Qiao, Q., Tran, T., Calcul, L., Liu, W., Ke, C., Cai, J. Nat. Commun. 2025, 16, 3226. [Link]
TOC Graphic for Proline-based tripodal cages with guest-adaptive features for capturing hydrophilic and amphiphilic fluoride substances
(45) Dynamic supramolecular snub cubes. Wu, H., Wang, Y., Đorđević, L., Kundu, P., Bhunia, S., Chen, A., Feng, L., Shen, D., Liu, W., Zhang, L., Song, B., Wu, G., Liu, B., Yang, M., Yang, Y., Stern, C., Stupp, S., Goddard, W., Hu, W., Stoddart, J. Nature 2025, 637, 347–353. [Link]
TOC Graphic for Dynamic supramolecular snub cubes
(44) Molecular recognition in water by synthetic hydrogen-bonding receptors. Zhai, C., Mariscal, A., Liu, W. Trends in Chemistry 2025, 7, 70–84. [Link]
TOC Graphic for Molecular recognition in water by synthetic hydrogen-bonding receptors
(43) From small changes to big gains: pyridinium-based tetralactam macrocycle for enhanced sugar recognition in water. Zhai, C., Zulueta, E., Mariscal, A., Xu, C., Cui, Y., Wang, X., Wu, H., Doan, C., Wojtas, L., Zhang, H., Cai, J., Ye, L., Wang, K., Liu, W. Chem. Sci. 2024, 15, 19588–19598. [Link]
TOC Graphic for From small changes to big gains: pyridinium-based tetralactam macrocycle for enhanced sugar recognition in water
(42) Charge-assisted hydrogen bonding in a bicyclic amide cage: an effective approach to anion recognition and catalysis in water. Xu, C., Tran, Q., Liu, D., Zhai, C., Wojtas, L., Liu, W. Chem. Sci. 2024, 15, 16040–16049. [Link]
TOC Graphic for Charge-assisted hydrogen bonding in a bicyclic amide cage: an effective approach to anion recognition and catalysis in water
(41) Chalcogenoviologen {Enhanced} {Host}–{Guest} Recognition. Feng, Y., Zhao, X., Appleton, D., Han, H., Young, R., Liu, W., Lee, C., Li, W., Liu, B., Wu, Y., Tang, C., Chen, A., Stern, C., Kim, D., Wasielewski, M., Qiu, Y., Stoddart, J. CCS Chem. 2024, 6, 2679–2691. [Link]
TOC Graphic for Chalcogenoviologen {Enhanced} {Host}–{Guest} Recognition
(40) A Geometrically Flexible Three-Dimensional Nanocarbon. Tang, C., Han, H., Zhang, R., De, L., Qi, Y., Wu, G., Jones, C., Rodriguez, I., Jiao, Y., Liu, W., Li, X., Chen, H., Bancroft, L., Zhao, X., Stern, C., Guo, Q., Krzyaniak, M., Wasielewski, M., Nelson, H., Li, P., Stoddart, J. J. Am. Chem. Soc. 2024, 146, 20158–20167. [Link]
TOC Graphic for A Geometrically Flexible Three-Dimensional Nanocarbon
(39) An HR2-Mimicking Sulfonyl-γ-AApeptide Is a Potent Pan-coronaviru Fusion Inhibitor with Strong Blood–Brain Barrier Permeability, Long Half-Life, and Promising Oral Bioavailability. Xue, S., Xu, W., Wang, L., Wang, X., Duan, Q., Calcul, L., Wang, S., Liu, W., Sun, X., Lu, L., Jiang, S., Cai, J. ACS Cent. Sci. 2023, 9, 1046–1058. [Link]
TOC Graphic for An HR2-Mimicking Sulfonyl-γ-AApeptide Is a Potent Pan-coronaviru Fusion Inhibitor with Strong Blood–Brain Barrier Permeability, Long Half-Life, and Promising Oral Bioavailability
(38) Harnessing ion–dipole interactions: a simple and effective approach to high-performance lithium receptors. Xu, C., Tran, Q., Wojtas, L., Liu, W. J. Mater. Chem. A 2023, 11, 12214–12222. [Link]
TOC Graphic for Harnessing ion–dipole interactions: a simple and effective approach to high-performance lithium receptors
(37) Triplet–Triplet Annihilation Upconversion in a Porphyrinic Molecular Container. Chen, H., Roy, I., Myong, M., Seale, J., Cai, K., Jiao, Y., Liu, W., Song, B., Zhang, L., Zhao, X., Feng, Y., Liu, F., Young, R., Wasielewski, M., Stoddart, J. J. Am. Chem. Soc 2023, 145, 10061–10070. [Link]
TOC Graphic for Triplet–Triplet Annihilation Upconversion in a Porphyrinic Molecular Container
(36) Dynamic Approach to Synthetic Lectin for Glucose with Boosted Binding Affinity through C−H Hydrogen Bonds. Zhai, C., Xu, C., Cui, Y., Wojtas, L., Liu, W. Chem. Eur. J. 2023, 29, e202300524. [Link]
TOC Graphic for Dynamic Approach to Synthetic Lectin for Glucose with Boosted Binding Affinity through C−H Hydrogen Bonds
(35) High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin. Wu, H., Wang, Y., Tang, C., Jones, L., Song, B., Chen, X., Zhang, L., Wu, Y., Stern, C., Schatz, G., Liu, W., Stoddart, J. Nat. Commum. 2023, 14, 1284. [Link]
TOC Graphic for High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin
(34) Thermally Controlled Exciplex Fluorescence in a Dynamic Homo[2]catenane. Garci, A., David, A., Le, L., Ovalle, M., Abid, S., Young, R., Liu, W., Azad, C., Brown, P., Wasielewski, M., Stoddart, J. J. Am. Chem. Soc. 2022, 144, 23551–23559. [Link]
TOC Graphic for Thermally Controlled Exciplex Fluorescence in a Dynamic Homo[2]catenane
(33) Mechanically interlocked pyrene-based photocatalysts. Garci, A., Weber, J., Young, R., Kazem-Rostami, M., Ovalle, M., Beldjoudi, Y., Atilgan, A., Bae, Y., Liu, W., Jones, L., Stern, C., Schatz, G., Farha, O., Wasielewski, M., Fraser, J. Nat. Cat. 2022, 5, 524–533. [Link]
TOC Graphic for Mechanically interlocked pyrene-based photocatalysts
(32) Syntheses of three-dimensional catenanes under kinetic control. Wu, Y., Guo, Q., Qiu, Y., Weber, J., Young, R., Bancroft, L., Jiao, Y., Chen, H., Song, B., Liu, W., Feng, Y., Zhao, X., Li, X., Zhang, L., Chen, X., Li, H., Wasielewski, M., Stoddart, J. PANS 2022, 119, 1–6. [Link]
TOC Graphic for Syntheses of three-dimensional catenanes under kinetic control
(31) PCage: Fluorescent Molecular Temples for Binding Sugars in Water. Liu, W., Tan, Y., Jones, L., Song, B., Guo, Q., Zhang, L., Qiu, Y., Feng, Y., Chen, X., Schatz, G., Stoddart, J. J. Am. Chem. Soc. 2021, 143, 15688–15700. [Link]
TOC Graphic for PCage: Fluorescent Molecular Temples for Binding Sugars in Water
(30) Whither Second-Sphere Coordination?. Liu, W., Das, P., Colquhoun, H., Stoddart, J. CCS Chem. 2022, 4, 755–784. [Link]
TOC Graphic for Whither Second-Sphere Coordination?
(29) A contorted nanographene shelter. Wu, H., Wang, Y., Song, B., Wang, H., Zhou, J., Sun, Y., Jones, L., Liu, W., Zhang, L., Zhang, X., Cai, K., Chen, X., Stern, C., Wei, J., Farha, O., Anna, J., Schatz, G., Liu, Y., Fraser, J. Nat. Commun. 2021, 12, 5191. [Link]
TOC Graphic for A contorted nanographene shelter
(28) Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exo-Binding with Cucurbit[6]uril. Wu, H., Wang, Y., Jones, L., Liu, W., Zhang, L., Song, B., Chen, X., Stern, C., Schatz, G., Stoddart, J. Angew. Chem. Int. Ed. 2021, 60, 17587–17594. [Link]
TOC Graphic for Selective Separation of Hexachloroplatinate(IV) Dianions Based on Exo-Binding with Cucurbit[6]uril
(27) Emergent behavior in nanoconfined molecular containers. Liu, W., Stoddart, J. Chem 2021, 7, 919–947. [Link]
TOC Graphic for Emergent behavior in nanoconfined molecular containers
(26) Supramolecular Gold Stripping from Activated Carbon Using α-Cyclodextrin. Liu, W., Jones, L., Wu, H., Stern, C., Sponenburg, R., Schatz, G., Stoddart, J. J. Am. Chem. Soc. 2021, 143, 1984–1992. [Link]
TOC Graphic for Supramolecular Gold Stripping from Activated Carbon Using α-Cyclodextrin
(25) Discrete Open-Shell Trisbipyridinium Radical Cationic Inclusion Complexes in the Solid State. Anamimoghadam, O., Jones, L., Cooper, J., Beldjoudi, Y., Nguyen, M., Liu, W., Krzyaniak, M., Pezzato, C., Stern, C., Patel, H., Wasielewski, M., Schatz, G., Stoddart, J. J. Am. Chem. Soc. 2021, 143, 163–175. [Link]
TOC Graphic for Discrete Open-Shell Trisbipyridinium Radical Cationic Inclusion Complexes in the Solid State
(24) Radical Cyclic [3]Daisy Chains. Cai, K., Cui, B., Song, B., Wang, H., Qiu, Y., Jones, L., Liu, W., Shi, Y., Vemuri, S., Shen, D., Jiao, T., Zhang, L., Wu, H., Chen, H., Jiao, Y., Wang, Y., Stern, C., Li, H., Schatz, G., Li, X., Stoddart, J. Chem 2021, 7, 174–189. [Link]
TOC Graphic for Radical Cyclic [3]Daisy Chains
(23) Supramolecular Paradigm for Capture and Co‐Precipitation of Gold(III) Coordination Complexes. Shaffer, C., Liu, W., Oliver, A., Smith, B. Chem. Eur. J 2021, 27, 751–757. [Link]
TOC Graphic for Supramolecular Paradigm for Capture and Co‐Precipitation of Gold(III) Coordination Complexes
(22) Ring-in-ring(s) complexes exhibiting tunable multicolor photoluminescence. Wu, H., Wang, Y., Jones, L., Liu, W., Song, B., Cui, Y., Cai, K., Zhang, L., Shen, D., Chen, X., Jiao, Y., Stern, C., Li, X., Schatz, G., Stoddart, J. J. Am. Chem. Soc 2020, 142, 16849–16860. [Link]
TOC Graphic for Ring-in-ring(s) complexes exhibiting tunable multicolor photoluminescence
(21) A precise polyrotaxane synthesizer. Qiu, Y., Song, B., Pezzato, C., Shen, D., Liu, W., Zhang, L., Feng, Y., Guo, Q., Cai, K., Li, W., Chen, H., Nguyen, M., Shi, Y., Cheng, C., Dean, R., Li, X., Fraser, J. Science 2020, 368, 1247–1253. [Link]
TOC Graphic for A precise polyrotaxane synthesizer
(20) Suit[4]ane. Liu, W., Stern, C., Stoddart, J. J. Am. Chem. Soc. 2020, 142, 10273–10278. [Link]
TOC Graphic for Suit[4]ane
(19) Cyclophane-{Sustained} Ultrastable Porphyrins. Liu, W., Lin, C., Weber, J., Stern, C., Young, R., Wasielewski, M., Stoddart, J. J. Am. Chem. Soc. 2020, 142, 8938–8945. [Link]
TOC Graphic for Cyclophane-{Sustained} Ultrastable Porphyrins
(18) XCage: A Tricyclic Octacationic Receptor for Perylene Diimide with Picomolar Affinity in Water. Liu, W., Bobbala, S., Stern, C., Hornick, J., Liu, Y., Enciso, A., Scott, E., Fraser, J. J. Am. Chem. Soc. 2020, 142, 3165–3173. [Link]
TOC Graphic for XCage: A Tricyclic Octacationic Receptor for Perylene Diimide with Picomolar Affinity in Water
(17) Stabilization and Extraction of Fluoride Anion Using a Tetralactam Receptor. Liu, W., Oliver, A., Smith, B. J. Org. Chem. 2019, 84, 4050–4057. [Link]
TOC Graphic for Stabilization and Extraction of Fluoride Anion Using a Tetralactam Receptor
(16) Croconaine Rotaxane Dye with 984 nm Absorption: Wavelength-Selective Photothermal Heating. McGarraugh, H., Liu, W., Matthews, B., Smith, B. Eur. J. Org. Chem. 2019, 2019, 3489–3494. [Link]
TOC Graphic for Croconaine Rotaxane Dye with 984 nm Absorption: Wavelength-Selective Photothermal Heating
(15) Fluorescent thienothiophene-containing squaraine dyes and threaded supramolecular complexes with tunable wavelengths between 600–800 nm. Liu, W., McGarraugh, H., Smith, B. Molecules 2018, 23, 2229. [Link]
TOC Graphic for Fluorescent thienothiophene-containing squaraine dyes and threaded supramolecular complexes with tunable wavelengths between 600–800 nm
(14) Macrocyclic Receptor for Precious Gold, Platinum, or Palladium Coordination Complexes. Liu, W., Oliver, A., Smith, B. J. Am. Chem. Soc. 2018, 140, 6810–6813. [Link]
TOC Graphic for Macrocyclic Receptor for Precious Gold, Platinum, or Palladium Coordination Complexes
(13) Guest Back-Folding: A Molecular Design Strategy That Produces a Deep-Red Fluorescent Host/Guest Pair with Picomolar Affinity in Water. Liu, W., Johnson, A., Smith, B. J. Am. Chem. Soc. 2018, 140, 3361–3370. [Link]
TOC Graphic for Guest Back-Folding: A Molecular Design Strategy That Produces a Deep-Red Fluorescent Host/Guest Pair with Picomolar Affinity in Water
(12) Non-Covalently Pre-Assembled High-Performance Near-Infrared Fluorescent Molecular Probes for Cancer Imaging. Shaw, S., Liu, W., Gómez, C., Schreiber, C., Betancourt, M., Zhai, C., Roland, F., Padanilam, S., Smith, B. Chem. Eur. J 2018, 24, 13821–13829. [Link]
TOC Graphic for Non-Covalently Pre-Assembled High-Performance Near-Infrared Fluorescent Molecular Probes for Cancer Imaging
(11) Fluorescent neuraminidase assay based on supramolecular dye capture after enzymatic cleavage. Liu, W., Gómez-Durán, C., Smith, B. J. Am. Chem. Soc. 2017, 139, 6390–6395. [Link]
TOC Graphic for Fluorescent neuraminidase assay based on supramolecular dye capture after enzymatic cleavage
(10) Synthetic mimics of biotin/(strept)avidin. Liu, W., Samanta, S., Smith, B., Isaacs, L. Chem. Soc. Rev. 2017, 46, 2391–2403. [Link]
TOC Graphic for Synthetic mimics of biotin/(strept)avidin
(9) Non-Covalent Assembly Method that Simultaneously Endows a Liposome Surface with Targeting Ligands, Protective PEG Chains, and Deep-Red Fluorescence Reporter Groups. Shaw, S., Liu, W., Brennan, S., Lourdes, M., Smith, B. Chem. Eur. J. 2017, 23, 12646–12654. [Link]
TOC Graphic for Non-Covalent Assembly Method that Simultaneously Endows a Liposome Surface with Targeting Ligands, Protective PEG Chains, and Deep-Red Fluorescence Reporter Groups
(8) Structural Control of Kinetics for Macrocycle Threading by Fluorescent Squaraine Dye in Water. Gómez-Durán, C., Liu, W., Betancourt-Mendiola, M., Smith, B. J. Org. Chem. 2017, 82, 8334–8341. [Link]
TOC Graphic for Structural Control of Kinetics for Macrocycle Threading by Fluorescent Squaraine Dye in Water
(7) Preparation of hyperstar polymers with encapsulated Au25(SR)18 clusters as recyclable catalysts for nitrophenol reduction. Hu, D., Jin, S., Shi, Y., Wang, X., Graff, R., Liu, W., Zhu, M., Gao, H. Nanoscale 2016, 9, 3629–3636. [Link]
TOC Graphic for Preparation of hyperstar polymers with encapsulated Au25(SR)18 clusters as recyclable catalysts for nitrophenol reduction
(6) High affinity macrocycle threading by a near-infrared croconaine dye with flanking polymer chains. Liu, W., Peck, E., Smith, B.. J. Phys. Chem. B 2016, 120, 995–1001. [Link]
TOC Graphic for High affinity macrocycle threading by a near-infrared croconaine dye with flanking polymer chains
(5) Sensitive Structural Control of Macrocycle Threading by a Fluorescent Squaraine Dye Flanked by Polymer Chains. Liu, W., Peck, E., Hendzel, K., Smith, B. Org. Lett. 2015, 17, 5268–5271. [Link]
TOC Graphic for Sensitive Structural Control of Macrocycle Threading by a Fluorescent Squaraine Dye Flanked by Polymer Chains
(4) Rapid Macrocycle Threading by a Fluorescent Dye-Polymer Conjugate in Water with Nanomolar Affinity. Peck, E., Liu, W., Spence, G., Shaw, S., Davis, A., Destecroix, H., Smith, B. J. Am. Chem. Soc. 2015, 137, 8668–8671. [Link]
TOC Graphic for Rapid Macrocycle Threading by a Fluorescent Dye-Polymer Conjugate in Water with Nanomolar Affinity
(3) Gel-sol-gel'' evolution triggered by formic acid. Li, Z., Liu, W., Hao, A. Colloids Surf. A: Physicochem. Eng. Asp. 2014, 451, 25–32. [Link]
TOC Graphic for Gel-sol-gel'' evolution triggered by formic acid
(2) Organogels based on β-cyclodextrin system with molecular recognition property. Hou, Y., Li, S., Sun, T., Yang, J., Xing, P., Liu, W., Hao, A. J. Incl. Phenom. Macrocycl. Chem. 2014, 80, 217–224. [Link]
TOC Graphic for Organogels based on β-cyclodextrin system with molecular recognition property
(1) Novel double phase transforming organogel based on β-cyclodextrin in 1,2-propylene glycol. Liu, W., Xing, P., Xin, F., Hou, Y., Sun, T., Hao, J., Hao, A. J. Phys. Chem. B 2012, 116, 13106–13113. [Link]
TOC Graphic for Novel double phase transforming organogel based on β-cyclodextrin in 1,2-propylene glycol